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OPTICAL-MECHANICAL ANALOGY

0. G. Onishchenko

In the study of the refraction of electromagnetic waves,
propagating in a spherically refracting medium, in the optical-
geometriec approximation, the apparatus developed for the motion of
a material point (particle) in the central field can be used on
the basis of the well-known analogy between the ray and the
trajectory of the particle [1].

According to the Fermat principle, for electromagnetic rays
propagating in a refracting medium

LS et
UJ/jgj; g é_r-'fj/n.«., o (1)

where Ve 1s the phase wveloclty of the wave, n 1s the refractive
index, ¢ is the velocity of light in vacuum and ds is an element
of length of the ray.

/3%

On the other hand, for a particle moving in a potential field .,

‘U with constant energy E, according to the Maupertu principle
s &jlﬁf@-f'. . ‘ (2)

where m is the mass of the particle, v 1s the velocity,
E=1/2 mv?
particle trajectory.

+ U = const and ds is an element of fthe length of the

¥ Numbers in the margin indicate pagination in the foreign text.



Henceforth, we will consider everywhere the trajectory of a
particle in a fixed central field U(r} and the trajectory of a
ray in a spherically refracting medium, i.e. n = n(r).

By comparing (1) and (2), it can be seen that the trajectory
of the ray colnecides with the trajectory of the particle when

vir)

M= 1= (3)
or
n(r)= .%_gﬁ
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In analogy with the law for the conservation of momentum of
the partlele

mursing = M=const ()

we can obtain from (1) the relation

Nirding = p =const (5)

where ¢ is the angle between the radius vector T and the tangent
to the trajectory (ray). Eguation (5) 1s usually called the
equation of the ray in a spherically refracting medium, Using
(5), in polar coordlnates r, 0, the equation of the ray can
be expressed in the following form

Vi 2 | (6)
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Equation (6) is analogous to the equation for the trajectory

of the particle in polar coordinates [2]:
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The values of r for which the denominator in (6) vanishes, 1i,e. /5
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determine the boundaries of the region in which the ray propagates.
When the region of admissible values r is bounded only by one
condition r > rp4p, the propagation of the ray 1s infinite,

This corresponds to the case when the receiver and emitter are
located at r > rpip. When the region over which r varles has

two boundaries rpin and ryaxs the trajectory of the ray lies
entirely 1in the interior of the ring

r < r <vr .

min max

2. Determination of the Refractive Index of a Spherically Re-
fracting Medium from the Total Refraction Angle

We will consider the propagation of electromagnetic waves in
a spherically refracting medium, when the region in which the
ray propagates is bounded by the condition r > rpip.

In polar coordinates.r,8, where 6 is measured in the direc-
tion of the polnt rpipn where the ray is deflected, the equation
of the ray (6) takes on the following form

Az

. _ 4+ par .
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where p 18 the impaect parameter of the ray (see figure).



When the receiver and emitter /6
a are far behind the boundaries

YT PEETI WRT Y 5

\ y of the refracting medium, 1t
can be assumed that they lle
b on the ray asymptotes.
- x/\ \\/{f"' " \\
T —"_&i:%/z'_""‘ﬁg - The angle 84 is
_____ _/f(jﬁﬁ___ R S
Refraction geometry of ray. H(P) par _
Key: a. Ray asymptotes fPﬁWF ¢ (10)

b. Ray

The total refraction angle y is

Xp)=%-28, . (11)

(10} and (11) imply
)/- . der'
{P)rfzﬂfmfm?

Let us assume that it was posslble to measure experimentally

(12)

the relation x(p) for p > py. Then, assuming that 1 - n(r) is

a monotonically decreasing function, we can reconstruct the

relation n{(r). To do this, taking advantage of the optical- /7
mechanical analogy, we can use the known solution of the nonlinear
integral equation (12) for n(r) (see [2], 5§18, problem 7). The

final result can be expressed in the following form

p.afy
G P}Klu/j :’?"Z‘:Ar‘n‘dp (13)
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Formula (13) implicitly defines the relatiocn for all

V2 en ™ i, )

Let us consider the case of a weakly refracting medlum, i.e.

siti)=f- s}
where An{r) << 1.

Under this assumption, the expression (12) for x(p) can be
simplified by analogy with problems 1 and 2, §20 [2]. Using a
series expansion 1in powers of An and transforming expression (12),
it is possible to obtaln:

(P) Zp/c/.an(ﬂ ﬁ (14)

Using the well-known solution of Abel's integral equation, we
can write

An expression for x(p) which 1s similar to (14) was derived in
a somewhat different manner in [3].

Let us consider the case when An is small and depends in the /8
following manner on r

ani)=Jelo /i (15)



where m and oy are constants. According to (14)

S =2pXmely. [ S (16)

Using the substitution p2/r2 = u, integral (16) can be reduced to
an Euler B-integral, and it can be expressed 1n terms of gamma

funetions
Sipezs o T
S TR O Iz

(17)

3. Application to the Refraction of Radlo Waves in the Regular

................

It is known that in the transillumination of the solar
corcna by radlio waves in the meter range in the region p < iORO
(see figure, Rq i 6.96-1010 em is the radius of the photosphere),
it is necessary to take into account, in addition to the
scattering of the electron concentration by the inhomogeneities,
also the refraction of the radic waves in the corona [4].

For radio waves with wavelength A = ¢/f < 8 m (f is the
wave frequency and ¢ the veloclty of 1light), we can assume that
An{r) << 1 in the solar corona in the region of heliocentric
distances r 2 3. Here

J-n mrf)® Iz A " (18)

where m is the mass of the electren, N is the electron concentra-
tion in el/cm3 and e 1s the electron charge.



To estimate the refraction angle of the radio waves 1in the
corona, we will assume that some average distribution of the /9
electron concentration in the corona has the following form:

M) = 10687° 1,559 4,807 (19)

where n = r/Ry and ng is the numerical value of the electron con-
centration on the Earth's orbit (n~ 214). The first two terms in the right
member of (19) are known as the Allen-Baumbach formula. The
additional term in (19) describes the results of the measurements

on the Eartht's orbit. Substituting (19) in (18), we obtain

4 = pe + e

where o = const and 8 = const for a fixed value of . The term
mn_16 in (19) can be ignored, since it describes the distribution
of the average electron concentration in the region

1.03 < n < 1.05. Using (17), we can obtalin the relation X(p) in

analytical form

A7y =Ap 4857,

where

7! ' 3
A= 03810 72, B= o.sv-m'-nef“

The table gives the relation x(p) for waves with f = 108 Hz

(A, = 3m) for n, = 6,10,30.
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P/E . :’ )’" fy X7 )
© 1 Pe =6 e =80 | Ny =50
3 17.7° 18.4° 1 22.8
4 3.7 4.1° 6.6
6 0.6 0.8'f I.9°
- 8 0.23°§  0.35h 0.95'[ 1
10 0.13°f 0.2} 0.60° l

It can be seen from the table that for the model of the
average electron concentration in the corona that was adopted,
the total refraction angle x is not large.
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